PLYWOOD INCLINED BEAM CAPACITY CHECK

BS 5268-2:2002

1.0 INPUT DATA

1.1 Geometrical Properties

Span (horizontal projection) Lhorizontal = mm

Plywood Thickness h = mm

Plywood Width b = mm

Angle of inclination θ = deg

Figure 1: Geometry

Geometry Diagram

Plywood inclined at angle θ with horizontal span L_horizontal

Effective Span along the inclined length Leff,inclined = Lhorizontal/cos(θ)

Leff,inclined = 380/cos(54°) = 646.15 mm

1.2 Loading

Uniformly Distributed Load (UDL) qLL = kPa

Total UDL on specified width wvert = qLL×b/1000

wvert = 2×1000/1000 = 2.00 kN/mm

Concentrated Load (mid-span) PL,LL = kN

1.3 Material Properties (BS 5268-2:2002)

Characteristic Bending Stress fm,g = N/mm²

Characteristic Shear Stress fv,g = N/mm²

Characteristic Compression Stress fc,g = N/mm²

Mean Modulus of Elasticity Emean = N/mm²

Minimum Modulus of Elasticity Emin = N/mm²

1.4 Modification Factors

Load Duration Factor K3 =

Depth Factor K7 =

Load Sharing Factor K8 =

Compression Factor K22 =

2.0 CALCULATIONS

2.1 Section Properties

Section Area A = b×h
A = 1000×12 = 12000.00 mm²
Second Moment of Area I = (b×h3)/12
I = 1000×12³/12 = 144000.00 mm⁴
Section Modulus Z = (b×h2)/6
Z = 1000×12²/6 = 24000.00 mm³

2.2 Load Resolution into Components

Resolve loads into components normal to and along the beam

UDL perpendicular to beam wperp = wvert×cos(θ)
wperp = 2.00×cos(54°) = 1.18 kN/mm
UDL parallel to beam wparallel = wvert×sin(θ)
wparallel = 2.00×sin(54°) = 1.62 kN/mm
Concentrated load perpendicular to beam PL,perp = PL,LL×cos(θ)
PL,perp = 1.5×cos(54°) = 0.882 kN
Concentrated load parallel to beam PL,parallel = PL,LL×sin(θ)
PL,parallel = 1.5×sin(54°) = 1.214 kN

2.3 Applied Actions

Maximum Bending Moment

MUDL = wperp×Leff,inclined²/8
MUDL = 1.18×646.15²/8 = 61606.96 kN.mm
MPL = PL,perp×Leff,inclined/4
MPL = 0.882×646.15/4 = 142.55 kN.mm
Maximum Bending Moment Mmax = max(MUDL; MPL)
Mmax = max(61606.96; 142.55) = 61606.96 kN.mm

Maximum Shear Force

VUDL = wperp×Leff,inclined/2
VUDL = 1.18×646.15/2 = 381.43 kN
VPL = PL,perp/2
VPL = 0.882/2 = 0.441 kN
Maximum Shear Force Vmax = max(VUDL; VPL)
Vmax = max(381.43; 0.441) = 381.43 kN

Maximum Axial Force (Compression)

Nmax = wparallel×Leff,inclined + PL,parallel
Nmax = 1.62×646.15 + 1.214 = 1047.04 kN

2.4 Serviceability Check: Deflection

Edeflection = Emean×K9 (assuming K9 = 1.0)
Edeflection = 5800×1.0 = 5800.00 N/mm²
Bending deflection from UDL δb,UDL = 5×wperp×Leff,inclined⁴/(384×Edeflection×I)
δb,UDL = 5×1180.00×646.15⁴/(384×5800.00×144000.00) = 8.44 mm
Bending deflection from PL δb,PL = PL,perp×Leff,inclined³/(48×Edeflection×I)
δb,PL = 882.00×646.15³/(48×5800.00×144000.00) = 0.06 mm
Maximum bending deflection δb,max = max(δb,UDL; δb,PL)
δb,max = max(8.44; 0.06) = 8.44 mm
Permissible deflection δadm = Leff,inclined/90
δadm = 646.15/90 = 7.18 mm
Deflection Check = FAIL   (δb,max = 8.44 > δadm = 7.18 mm)

2.5 Strength Check: Bending

Permissible bending stress σm,adm = fm,g×K3×K7×K8
σm,adm = 6×1.25×1.00×1.00 = 7.50 N/mm²
Applied bending stress σm,app = Mmax/Z
σm,app = 61606.96×1000/24000.00 = 2567.0 N/mm²
Bending Check = FAIL   (σm,app = 2548.08 > σm,adm = 7.50 N/mm²)

2.6 Strength Check: Shear

Permissible shear stress τadm = fv,g×K3×K8
τadm = 0.5×1.25×1.00 = 0.63 N/mm²
Applied shear stress τapp = 1.5×Vmax/A
τapp = 1.5×381.43×1000/12000.00 = 47.68 N/mm²
Shear Check = FAIL   (τapp = 47.47 > τadm = 0.63 N/mm²)

2.7 Strength Check: Axial Compression

Permissible compression stress σc,adm = fc,g×K3×K22×K8
σc,adm = 6×1.25×1.00×1.00 = 7.50 N/mm²
Applied axial compression stress σc,app = Nmax/A
σc,app = 1047.04×1000/12000.00 = 87.25 N/mm²
Axial Check = FAIL   (σc,app = 87.17 > σc,adm = 7.50 N/mm²)

2.8 Combined Bending and Compression Check

Interaction ratio = (σm,app/σm,adm) + (σc,app/σc,adm)
Interaction ratio = (2567.0/7.50) + (87.25/7.50) = 353.90
Combined Stress Check = FAIL   (Interaction ratio = 353.90 > 1.0)

*** OUTPUT SUMMARY ***

Verification Results

Deflection Check: FAIL

Bending Stress Check: FAIL

Shear Stress Check: FAIL

Axial Stress Check: FAIL

Combined Stress Check: FAIL

Detailed Results

Section Area A = 12000.00 mm²

Second Moment of Area I = 144000.00 mm⁴

Section Modulus Z = 24000.00 mm³

Maximum Bending Moment Mmax = 61606.96 kN.mm

Maximum Shear Force Vmax = 381.43 kN

Maximum Axial Force Nmax = 1047.04 kN

Maximum Deflection δb,max = 8.44 mm

RESULTS

DESIGN FAILS - ADDITIONAL STRENGTH OR REINFORCEMENT REQUIRED